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Abstract

Online platforms that link buyers and sellers are able to shape the pattern of

observation between market participants. We model buyer-seller interactions as

a series of bipartite graphs, which are each realised with a probability chosen by

the platform owner. Prominent sellers disproportionately increase competition,

which decreases prices. To maximise pro�t, the platform owner ensures that the

size of the neighbourhood of each buyer is the same in each state of the world

and randomises buyer observation across all sellers on the platform, a result that

still holds even when buyers are heterogeneous. When products are vertically

di�erentiated, the platform owner faces a trade-o� between biasing observation

*I would like to thank Alex Teytelboym and Mark Armstrong for their invaluable contributions to
this paper. Thank you also to Sanjeev Goyal, Mihai Manea, Matthew Elliott, Francis Bloch, Daniel
Quigley, Meg Meyer and participants at conferences at Stony Brook Game Theory Festival, the Paris
School of Economics and the Northwestern-Paris-Oxford theory seminar for their comments on this
paper.
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towards high-quality products and increasing competition. The extent to which

platforms highlight high-quality products and the number of sellers depends on

the characteristics of the market(s) in which they operate.

KEYWORDS: Networks, strategic interaction, network games, interventions, in-

dustrial organisation, platforms.

1 Introduction

Owners of large online marketplaces, like Airbnb or Amazon Marketplace, choose

the ordering of sellers and number of results, both per search and in total, shown to

buyers on the platform, and therefore determine the pattern of buyer-seller observa-

tions. On these platforms, buyers only observe a subset of sellers (Kim, Albuquerque

and Bronnenberg, 2010 and Ringel and Skiera, 2016). Consumers engage far less with

results on the second search page of online search engines than the �rst, and so on

(Smith and Brynjolfsson, 2001, Baye et al, 2009 and Baye et al 2016), to the extent

that the bottom item on the �rst page of results drew 140% more clicks than the �rst

item on the second page (Chitika, 2013).

In choosing the search environment, platforms choose which buyers observe which

sellers and how many sellers e�ectively compete with one another. A natural question

is: what is the pro�t-maximising pattern of buyer-seller interactions? More speci�-

cally, how many sellers should compete for a given group of buyers and which sellers

should those buyers observe?

We �nd that sellers being relatively prominent on a platform is costly in terms

of aggregate platform pro�t, as prominence leads to competition being more con-

centrated among the prominent sellers, which has disproportionately large e�ects on

prices across the network, even for those sellers who are less likely to be observed.1

1 Prominence here refers to the probability that buyers observe a given seller, and is therefore

modeled di�erently to e.g. Armstrong, Vickers and Zhou (2009) and Armstrong and Zhou (2011),

where prominent sellers are observed �rst and either accepted or rejected in a search model.
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As a result, the platform has an incentive to display a �xed number of sellers to each

group of buyers. Under the assumptions that there is some probability that buyers

are also able to �nd sellers through means other than the platform's internal search

process and products are not vertically di�erentiated, this incentive results in it being

optimal for the platform to randomise which set of sellers buyer groups observe, such

that each buyer observes each seller with equal probability. This result continues

to hold, even when buyers are heterogeneous with respect to how substitutable they

view the products on o�er.

Furthermore, when products are vertically di�erentiated, our model suggests that

while the platform has an incentive to bias observation towards higher quality sellers,

even the lowest quality sellers are observed with some probability if quality dispersion

is not too high. If platforms were to limit search results for some behavioural reason2

then high quality sellers would always be shown to each buyer in order to maximise

demand, which is not necessarily optimal here.

Markets in which quality dispersion is high tend to result in higher pro�ts, as

the platform is able to increase the probability that high-quality sellers are observed.

Whether the number of sellers observed by buyers is higher or lower in markets with

lower quality dispersion depends on product substitutability. If products are not

that substitutable, then the competition e�ects associated with a high-quality seller

being observed dominate, and so fewer sellers are observed on average when quality

dispersion is high.

However, when products are highly substitutable, there are few competitors in

the market to start with, and the cost of missing out on sellers near the top of the

quality distribution is in expectation higher when quality is highly dispersed, so the

platform shows more sellers to the buyers in this setting compared to the case where

seller quality is more similar.

2For example, rational inattention, see Hefti and Heinke (2015), or choice overload, see Chernev
et al, (2015) for a meta-analysis and e.g. Nager and Gandotra (2016) and Moser et al. (2017) for
applications to an online setting.
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In terms of our approach, we develop a model of groups of buyers and sellers

interacting on a network, with sellers competing on price.3 We eschew network bar-

gaining models (Kranton and Minehart, 2001, Corominas-Bosch, 2004 and Polanski,

2007) in favour of a model in which each seller sets a single price for all buyers.

This approach makes it possible to model an arbitrary set of observation patterns,

characterise optimal prices and platform structure, even when there a large number

of buyers and sellers that are potentially heterogeneous.

Our set-up allows us to characterise the equilibrium price of a seller as a decreasing

function of the seller's Bonacich centrality in the network, a result consistent with the

broader games on networks literature (Ballester, Calvò-Armengol and Zenou, 2006,

and Bramoullé, Kranton and D'Amours, 2014), and the application of this literature

to an IO context (Bimpikis, Ehsani and Ilkiliç, 2018 and Elliott and Galeotti, 2019).

In this setting, a seller's centrality captures the amount of competition they face on

the platform: more central players face more competition from other more central

players, which in turn leads to lower prices.

From a theory perspective, our contribution is that the platform owner chooses

the distribution of possible bipartite networks in order to maximise total pro�ts given

the equilibrium behaviour of the sellers. This methodology nests approaches in which

a central planner can (costlessly) choose the weighted or unweighted edges of a de-

terministic network (see Sun, Zhaou and Zhou, 2021 and Li, 2020), but allows for

further �exibility by allowing for the realisation of particular link structures to be

correlated probabilistically, which, as we shall see, is generally pro�t increasing in

this particular setting.4

3Our set-up thus bears a relation to work on captive buyers; see, Ireland (1993), McAfee (1994),
Salvadori (2013) and Armstrong and Vickers (2019). This literature does not model buyer-seller
interactions as a graph, but it does consider a pattern of seller competition that can be summarised
in this way.

4Our methodology thus di�ers from other approach to the interventions in networks, for example
the intervention by targeting speci�c nodes (of which there is a large literature, including, e.g.
Ballester, Calvò-Armengol and Zenou, 2006; Galeotti and Goyal, 2009, Bloch and Querou, 2013;,
Leduc, Jackson, and Johari, 2017; Akbarpour, Malladi, and Saberi, 2020, Belhaj, Deroïan and Sa�,
2020) or changes to private returns on investment (see Galeotti, Golub and Goyal, 2020).
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Given that the platform designer chooses an optimal platform in order to elicit

a particular equilibrium action pro�le, our analysis shares some similarities from

approaches that apply persuasion to the context of platforms, examples of which

include where platforms segment markets by withholding information (Armstrong and

Zhou, 2020 and Elliott, Galeotti and Koh, 2020) or use seller ratings as a means of

biasing search results (Charlson, 2021). The latter approach shares some similarities

with the analysis here, but our analysis gives the platform full control over the pattern

of buyer observations and does not model seller ratings explicitly.

Our analysis suggests that competition authorities should examine intra-platform

competition, in addition to inter-platform competition, which has been emphasised

in the traditional platforms literature (Tirole and Rochet, 2003, Armstrong, 2006 and

Tan and Zhou, 2019). Regulating the internal structure of the networks that underpin

large online platforms may reduce the extent to which consumers are harmed by the

formation of monopolistic platforms, by increasing choice and lowering prices.

2 Motivating example

Large, online platform owners must design platforms in which many sellers compete

for groups of buyers. If sellers can only set one price, then network design has implica-

tions for the nature of competition between sellers for di�erent buyers. If a platform

owner can a�ect which buyers observe which sellers and sellers only set one price, then

the platform owner faces a trade-o� between more sellers being observed, increasing

demand, and the resultant increase in competition.

As an example, suppose the probability that two buyers observe two sellers is

strictly between 0 and 1. Then all the possible ex-post market structures (ignoring

the case where no buyer observes any sellers) are shown in Figure 1.
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Figure 1: The black nodes represent sellers, the white nodes represent buyers. Assum-
ing sellers and buyers are identical, these con�gurations represent all possible market
types when there are two sellers and two buyers.

Consider the nature of total pro�ts and competition if prices were set after the

realisation of a network structure. Market structures on the bottom and to the right

of the diagram exhibit less competition, but pro�ts are lost because the buyers will

be assumed throughout to purchase at least some goods from any seller they observe.

This issue is reduced in market structures above and to the left of the diagram;

however, there, the two sellers are in more direct competition with one another,

which reduces pro�t due to both sellers setting a lower price.

3 Model

Sellers, buyers and the platform owner

Suppose there is a �nite set, B, whose elements are �consumer segments�, in the sense

that they are a �nite mass of consumers who are assumed to share some trait, such

as geographical location, age demographic, occupation, etc. We use n to denote the
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number of consumer segments.

Similarly, let S be a �nite set of sellers, where |S| = m. Sellers each sell a single

type of completely divisible good, and each seller's good is an imperfect substitute

for each of the goods.

Sellers and consumer segment interact on a platform, with each consumer segment

observing a subset of S. These observations generate a network Gτ = (B ∪ S), with

an observation between a consumer segment i and seller j represented by an edge,

Eij ∈ Gτ . We assume that the graph generating process is stochastic in the sense

that there is a probability θτ ∈ [0, 1] that a graph Gτ is generated for every possible

m− n bipartite graph, and hence
∑

τ θτ = 1. Let θ denote a vector whose τth entry

is θτ .

Consider a simple example of the above set-up, with three sellers (X, Y and Z)

and three consumer segments (1, 2 and 3). Suppose the two graphs that can be

realised with some positive probability are: (1) the complete graph, in which each

buyer observes each seller and; (2) the graph depicted on the right of Figure 2, in

which sellers Y and Z compete for consumer segment 2 but the other two segments

are captive. Assume both of these graphs are realised with equal probability.

Figure 2: A case where two graphs can be realised.

Let p denote a m× 1 vector whose jth component is pj ∈ R+, the price of j's good.

We assume that sellers set prices prior to the realisation of the links in the network,
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but with full knowledge of the vector θ. Let a, γj, ci be strictly positive scalars and

µτij be such that if there exists an edge between i, j, Eij ∈ Gτ , then µτij = 1 and 0

otherwise. Consumer segment i's expected demand function, xij(.) : Rm → R+, for

product j can be expressed as follows:5

E[xij(p;θ)] =
∑
τ

θτµ
τ
ij(aγj − apj + ci

∑
k 6=j

µτik(pk − γk)),

if the expression on the right is positive, and otherwise E[xij(p;θ)] = 0. The param-

eter γj is a measure of the quality of the seller j. As ci > 0, each product is a gross

substitute for every other product.

Each seller, j, is assumed not to be able to price discriminate across buyers, and

hence sets a single price pj ∈ R+. Sellers compete with one another on price, and set

prices simultaneously. Seller j's expected aggregate demand function is then de�ned

E[xj(p;θ)] =
∑n

i=1 E[xij]. Pro�t is similarly de�ned E[πj(p;θ)] = E[pjxj(p;θ)]. Each

seller's maximisation problem can be expressed:

max
pj

E[πj(pj, p_j ; θ)].

Let Γ(θ) represent the simultaneous move m-player game played on a network G

with payo�s as speci�ed above and strategy space R+. The platform owner has the

following pro�t function:

E[πP (p;θ)] = χ

m∑
j=1

E[πj(p;θ)],

where 0 < χ < 1.

Given the implicit assumption here that sellers have no marginal cost, the platform

5We show that this assumption is an approximation of the linear demand curve that is generated
from a quadratic, quasi-linear demand curve in the Appendix.
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owner's pro�t function is equivalent to taking a proportion of seller revenues. A

number of large platforms (e.g. Airbnb, Amazon Marketplace, Etsy and eBay) take a

proportion of total revenue, and hence the dynamics on these platforms are captured

by this assumption. If sellers were to have equal constant marginal costs, then the

qualitative results of the model would remain unchanged.

An extension not considered here would be the case where sellers had di�erent

marginal costs, as the two models of platform revenue would potentially result in

di�erent optimal network structures.6 We also do not consider a �xed-fee based

model of platform in our analysis: such a model seems less commonly used in the

kind of large-scale buyer-seller platforms that we wish to analyse here.

The search environment

We consider a search environment in which the platform owner chooses a baseline

distribution of networks, θb, optimising their above pro�t function. If a seller, j, is

not observed by a buyer, i, in a baseline network G generated with positive probability

by θb, then there is a probability, υ ∈ [0, 1) ∀i, j, of �external observation�, where i

observes j even though Eij /∈ G. Together, the baseline distribution of networks and

these external observation probabilities induce a probability vector, θ.

The baseline distribution of networks, θb, re�ects the groups of sellers presented

to consumer segments by the platform owner, when, for example, they enter a search

term on the platform's internal search engine.

The external observation probability υ captures the notion that buyers may �nd

the seller through some other means, like an external search engine or word of mouth,

even if they are not shown the seller by the platform intentionally through the plat-

6The di�erence between pro�t and revenue on these platforms is complicated by the fact that
some of the costs are borne by consumers (i.e. postage and packaging), and platforms do not
necessarily take a proportion of these elements of seller revenue. The recent changes to the Amazon
algorithm, which reportedly takes into account a product's pro�tability to the platform re�ects this
nuance (see, WSJ, 2019), and supports the possibility of seller pro�t being aa component of the
platform's objective function.
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form's search process.7 If a graph G is realised with probability θ for the distribution

θb, then its realisation probability for the distribution θ is θ(1 − υ)(mn−φ), where φ

is the number of edges in G. The graph G + Eij where Eij /∈ G is realised with

probability θυ(1− υ)(mn−φ)−1 and so on.

Of course, the existence of such leakages from the internal search process may

generate an incentive to limit the number of sellers allowed to enter the platform. We

leave this decision unmodelled, though note that the attractiveness such a strategy

would depend on the platform's owner's ability to screen sellers for e.g. quality before

they enter. If the platform is fully in control of the observation process, then υ = 0.

Given the platform owner's pro�t function above, they are assumed to choose θb

in order to solve the following maximisation problem:

maxθbE[πP (p;θb, υ)].

We assume throughout that θ is common knowledge, and prices are hence set after

the realisation of θ, but, as stated previously, prior to the realisation of the actual

observation network.

4 Equilibrium characterisation

We characterise the equilibrium price setting behaviour for a given vector of graph

probabilities θ. De�ne βj(θ) :=
∑

i

∑
τ θτµ

τ
ij, as the expected number of consumer

segments that observe j and ĉjk(θ) = 1
2aβj

∑
τ θτ

∑
i

∑
j

∑
k ciµ

τ
ijµ

τ
ik, which is a mea-

sure of the strength of the connection between j and k because it measures the

weighted link between the sellers and shared buyers.

De�ne the competition network, GS(θ) as a projection of G(θ), where the edge

7To get some perspective on the proportion of users who receive information using external
sources, more than 10% of users �nd products on Amazon via means other than Amazon's internal
search process (Nasdaq, 2018).
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between sellers j and k has the weight ĉjk(θ). The competition network of the prob-

ability vector θ that generates the two graphs in Figure 2 with equal probability is

shown in Figure 3 below.

Figure 3: Transforming the network G into the competition network GS. Here it is
assumed that a = 1 and c = 0.25 for each buyer and γj = 1 for all j.

Let γl denote the smallest component of the vector γ. Throughout, we make the

following assumption:

(A1) : a >

∑
i ci

∑
j 6=l γj

nγl
∀i

De�ne RS(θ) as a zero-diagonal matrix of a network GS(θ) with elements ĉjk(θ) and

C(θ)1m =
∑∞

k=0R
k
S(θ)1m, which is the Bonacich centrality measure of the network

GS(θ). The following Proposition, which characterises the equilibrium price vector,

then holds:

Proposition 1. If (A1) holds, then the game Γ(θ) has a unique Nash equilibrium in

pure strategies, which is the equilibrium price vector:

p∗(θ) = γ − 1

2
C(θ)γ.

A seller's equilibrium price is decreasing in their centrality in GS(θ). Sellers who are

connected to more isolated consumer segments face relatively less competition than

sellers who are largely connected to segments with di�erent goods to choose from,
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and therefore are able to set a higher price in equilibrium than other sellers. The

above expression implies seller j's price is increasing in γj but is decreasing in every

other element of the vector γ.

The assumption (A1) provides a restriction on each ĉjk(θ), which measures the

substitutability of products relative to the e�ect own price has on demand. Speci�-

cally, (A1) guarantees both that (a): xij(θ) > 0 for all i, j pairs at equilibrium and (b)

that I − λRS(θ) is strictly diagonally dominant for all θ, and thus positive de�nite.

Jointly, these two facts guarantee that the Nash equilibrium of the game both exists

and is unique for any graph structure.

Recall that sellers target segments of consumers in the model, meaning that for

xij(θ) > 0 to hold, it only need be that a small subset of consumers within the

potentially large group, i, has positive demand for j's product at equilibrium.

5 The role of prominence

To better understand some important properties of our price equilibrium, we assume

in this section that there is a probability that i observes j of wij = wj for all i

and these probabilities are determined by nature (rather than the platform) in the

following sense: each wj is the realisation of a random variable w̃j according to the

symmetric probability distribution, Λ, which is bounded such that wj ∈ [0, 1]. The

random variables w̃j are independently and identically distributed, and generate the

distribution over bipartite networks, θ. θ is assumed to be common knowledge.

The observation probabilities of the consumer segments can be thought of as a

measure of �prominence� in the sense that they capture the likelihood that the seller is

observed by a given buyer. Seller j's prominence in the network potentially increases

pro�ts as a result of increasing the probability of sales, but at the same time it imposes

a cost on the rest of the network by increasing competition, reducing prices of every

seller, including for the more prominent seller.
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Recall that the centrality vector in GS can be expressed C(θ)1 =
∑∞

k=0 R
k
S(θ)1.

It follows that
∂2Cj(θ)

∂2wj
≥ 0. Recall that prices are falling in the centrality of the sellers

in this setting. Hence, increasing wj imposes a cost upon the platform owner be-

cause the centrality measure has a feedback e�ect such that increasing an observation

probability wj reduces j's price, which reduces every other seller's price, which then

reduces j's price and so on. This feedback e�ect, which is a feature of the Bonacich

centrality measure, is increasing as the centralities of the sellers in GS become larger.

To model this discussion formally, suppose w̃j ∼ Λ1 and let Λ2 be a mean-

preserving spread of Λ1 such that when w̃
′
j ∼ Λ2 constructed in the following way

such that w̃
′
j = w̃j + εj, where εj is symmetrically distributed and has mean 0, and is

bounded such that w̃
′
j ∈ [0, 1]. Let θ̃k denote the random probability vector generated

by the distribution Λk. Then the following result holds:

Theorem 1. Suppose γj = γ ∀j. Then, E[pj(θ̃1)] > E[pj(θ̃2)] and E[πP (θ̃1)] >

E[πP (θ̃2)].

The expected number of matches (i.e. E[
∑

j w̃j]) is the same for both probability

distributions. Hence, any di�erences in expected pro�t between the two are the

result of di�erences in the expected prices.

As the quality vector γ is independent of centrality in this case, the expected price

vector can be denoted: E[p∗(θ̃)] = γ − 1
2
E[C(θ̃)]γ. Recalling that ∂2Ck

∂2wj
≥ 0 and that

the w̃js are independent of one another, we show in the Appendix that E[Cj(θ̃2)] >

E[Cj(θ̃1)] ∀j. This implies that expected prices are lower in the case where each w̃j

is distributed according to the mean preserving contraction θ̃2. Intuitively, this result

is driven by the fact that high realisations of an observation probability w̃j result in

a disproportionately low price compared to low realisations of w̃j.

Furthermore, as observation probabilities are independent of each other, if they

have a distribution of θ̃2 it results in a higher probability that two or more sellers are
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prominent. We refer to the case where there is relatively intense competition between

a subset of the sellers on the network as one in which competition is concentrated.

There being a higher-than-average probability that two sellers compete with one

another drives their own prices down, which propagates across the network.

6 Optimal networks

In this section, we use the equilibrium characterisation in Section 4 and the analysis in

Section 5 to show which networks are optimal for both consumers and the platform.

Consumer surplus and pro�ts

We �rst characterise the networks that maximise consumer surplus. De�ne the ex-

pected consumer surplus of consumer segment i for a given equilibrium price vector

p∗ and demand vector x∗
i is as follows:

E[CSi(x
∗
i ;p

∗)] =
1

2

∑
τ

θτ [
m∑
j=1

µτijx
∗
ij(γj +

m∑
k=1

µτik
ci
a

(p∗k − γk)− p∗j)].

De�ne CS(x∗;p∗) :=
∑

iCSi(x
∗
i ;p
∗), where x∗ is an m × n matrix whose ijth com-

ponent is x∗ij(p
∗). As I − λRS is diagonally dominant by (A1), it is clear from the

above expression that the expected value of each CSi(x
∗
i ;p

∗) is falling in p∗. It is

also straightforward to show that expected consumer surplus, ceteris paribus, is in-

creasing in the expected number of connections in G a buyer has. De�ne Gc as the

complete graph, in which each consumer segment observes each seller. Let θc denote

the probability vector in which the complete graph Gc is yielded with probability 1.

The following Proposition holds:

Proposition 2. For any probability vector θj 6= θc, E[CS(x∗
i ;p

∗)|θ=θc] > E[CS(θ)|θ=θj].

The centrality of each agent is at its maximum for a given number of buyers and

sellers when the network is complete. Intuitively, when the network is complete, each
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buyer is competed for by each seller. A complete network maximises competition,

which reduces the equilibrium price level of each seller.

While consumer surplus is maximised by the complete network, it does not neces-

sarily maximise the platform's pro�t. To maximise pro�t, the platform owner must

choose a network structure that maximises the expected number of sellers each con-

sumer segment observes while accounting for the constraint that increasing observ-

ability decreases prices. Proposition 3 formalises the above intuition:

Proposition 3. For all γ, there exists a c̄ ∈ R+ such that if ci > c̄ for at least one

i, then in any solution to the platform owner's maximisation problem, θ∗, θ∗c < 1.

As products on the platform become increasingly substitutable to a consumer seg-

ment, i, the owner's incentive to reduce the number of sellers observed by i increases.

If ci becomes too large, the platform owner will show i fewer products, reducing

expected sales, but increasing prices and pro�t.

Taken literally, Proposition 3 indicates that if products are su�ciently substi-

tutable, platforms will or should intentionally display only a subset of sellers, hiding

some from consumers entirely. It is unclear how prevalent the hiding of products on

the platforms of interest are, but the Proposition captures the idea that there is a

theoretical incentive for platforms to engage in such behaviour.

At the very least, the Proposition highlights the incentive from a platform per-

spective to reduce competition between sellers, and such an incentive could shape

decisions such as the number of results displayed per search page. Chitika (2013)

suggests that buyer observation is discontinuous, in the sense that the last search

result on the �rst page of results is far more likely to be observed than the �rst result

on the second page, and so displaying fewer search results per page would reduce the

e�ective number of results observed by most consumers.
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Pro�t-maximing graphs with homogeneous consumers and sell-

ers

The above analysis indicates that the platform owner has an incentive to reduce

both the number of products observed and the extent to which sellers are prominent.

We can use these observations to understand which networks are pro�t maximising

for the platform when they are able to choose the baseline distribution of networks.

Throughout this section, we assume that ci = c ∀i, and γj = γ ∀j.

The platform owner's desire to reduce seller prominence implies the following

result:

Proposition 4. Any solution, θ∗b , to the platform owner's maximisation problem, in-

duces a θ∗ and GS(θ∗) such that Cj(θ
∗) = Ck(θ

∗) for all j, k pairs where βj(θ
∗), βk(θ

∗) >

0.

To understand why Proposition 4 holds, we de�ne the concept of a neighbourhood

switch. Take a graph Gτ where the τth component of θb is θτ > 0. De�ne Gjk as a

graph which is the result of performing a neighbourhood switch between two sellers

j and k in G, such that for any i where Eij ∈ G and Eik /∈ G, Eij /∈ Gjk and vice

versa. Such a switch is depicted in Figure 4.

Figure 4: A neighbourhood switch between sellers X and Y.

De�ne a vector θjk where the probability that the graph Gjk is realised is equal to
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θτ for each graph Gτ which has a positive component in the vector θ. Now de�ne

another probability vector, θ̂j, as follows: θ̂j := (1 − (m− 1)ε)θ +
∑

k εθjk.

Let Cj(θ) be (jointly one of) the smallest component(s) of the vector C(θ)1m.

Then θ̂j involves there being some positive probability that each seller k (who by

de�nition are weakly more central than j) will face the competition faced by j in

every graph realised with positive probability. Due to seller prominence being costly

to the platform, such a switch increases k's price more than it decreases j's price. As

such a switch is performed on every seller, prices rise overall, and each price rise also

has further second-order price e�ects, as prices are strategic complements. It follows

that πP (θ̂j) > πP (θ).

Hence, the optimal competition graph structure is one in which each active seller

is as central as every other active seller. If this is not the case, then the platform

owner can always �nd a marginal re-allocation that increases the expected number of

consumer segments observing the higher priced seller and increases prices across the

network.

Proposition 4 does not fully characterise the optimal solution to the platform

owner's problem. Instead, it provides a condition under which a graph GS(θ) is the

result of the platform owner's maximisation problem. It is possible to use this result to

map the optimal set of competition graphs onto corresponding bipartite observation

graphs.

Let ϕτi and ϕ̂i(θ
∗) denote the number of sellers consumer segment i observes in

the graph Gτ and the expected number of sellers i observes across all graphs for the

vector θ∗. We show in that each consumer segment's number of observations should

be centered closely around this average in any optimal solution:

Theorem 2. Any solution to the platform owner's problem, θ∗b and its induced prob-

ability vector, θ∗, are such that: (a) ϕ̂∗i (θ
∗) = ϕ̂(θ∗) ∀i; and (b) any component,

θ∗τ > 0, of θ∗b corresponds to a graph Gτ such that ϕτi = bϕ̂(θ∗b)c or ϕτi = dϕ(θ∗b)e

for some ϕ ∈ (0,m] and all i. If υ = 0, then this implies that ϕτi = bϕ̂(θ∗)c or
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ϕτi = dϕ̂(θ∗)e for all i.

A network G in which a consumer segment i observes ϕ̂(θ∗) + k (where k > 1)

sellers has a disproportionately negative e�ect on pro�ts compared with the otherwise

identical network G
′
in which i observes ϕ̂(θ∗)− k sellers. The reason for this is that

in G each of the ϕ̂(θ∗) + k sellers competes with ϕ̂(θ∗) + k − 1 other sellers. Hence,

the sum of links generated by i's observation in any network is convex in the number

of sellers observed.

In the Appendix, we show that in the case where there is probability of graphs

such as G and G
′
being generated, it is always possible to �nd a reallocation of

probabilities such that: (a) consumer segment i (and every other consumer segment)

observes the same number of sellers in expectation and (b) prices increase.

The platform owner maximises aggregate pro�t by ensuring that the number of

sellers observed by each buyer is as tightly focused around some mean, which is deter-

mined by the innate demand for the sellers' goods and how substitutable those goods

are, as possible. For any given υ, such an outcome minimises the probability of there

being states in which there are a large number of sellers competing and some sellers

being relatively more prominent than others, both of which are disproportionately

costly to the platform owner.

When υ = 0, the platform owner is able to fully control which sellers consumer

segments observe, and hence show consumers either bϕ̂(θ∗)c or dϕ̂(θ∗)e sellers. When

υ > 0, it is still optimal to intentionally show each consumer segment bϕ̂(θ∗b)c or

dϕ(θ∗b)e sellers, with dϕ(θ∗b)e < dϕ̂(θ∗)e, as when υ > 0 the average number of sellers

observed will be greater than the average number of sellers intentionally shown to

consumer segments by the platform owner.

When ϕ̂(θ∗) is not an integer, either any optimal probability vector θ∗ is non-

degenerate, to ensure that the correct number of sellers are observed in expectation

or m and n are such that some consumer segments can be shown bϕ̂(θ∗)c sellers and

some dϕ̂(θ∗)e sellers so that the correct average number of sellers can be displayed
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using a single, deterministic graph. Either way, when υ = 0, there are solutions to

the platform's optimisation problem in which there are only dϕ̂(θ∗)e sellers for whom

βj(θ) > 0, and are thus active in the network. If υ > 0, this is not the case, as by

de�nition there is some probability every seller will be observed by every consumer

segment. This fact has implications for the optimal network structure, as we outline

below.

Comparative statics and the optimality of randomisation

Suppose that υ > 0. When this holds, it is possible to further characterise the optimal

graph structure, even in the case where υ is arbitrarily small. Let wij(θ
∗) denote the

total probability that i observes j for a probability vector θ∗. The following result

holds:

Proposition 5. If υ > 0, then any solution to the platform owner's maximisation

problem, induces a θ∗ such that βj(θ
∗) = β ∈ R+ ∀j. Hence for any υ ∈ [0, 1), m and

n there exists a solution to the platform owner's maximisation problem that induces a

θ∗ in which wij(θ
∗) = w for all i, j pairs and each consumer i observes ϕ̂(θ∗) sellers

in expectation.

The �rst result in Proposition 5 implies that the total probability that each seller is

observed across all consumer segments must be the same for all sellers. If βj(θ
∗) >

βk(θ
∗) for some seller pair (j, k), then it must be that βj(θ

∗
b) > βk(θ

∗
b). Given at the

optimum it must be that ϕτi = bϕ̂(θ∗)c or ϕτi = dϕ̂(θ∗)e for all i, we show in the

appendix that this inequality in turn implies Cj(θ
∗) < Ck(θ

∗).

Intuitively, conditional on being active, sellers who are more likely to be observed

in the baseline graph are also more likely to be active in a state of the world in

which there are fewer sellers, i.e. states where few or none of the sellers who are

not observed in a given baseline graph are observed by some other means by the

consumer segments. This reduces the centrality of these sellers compared with those
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sellers who are less likely to be observed in a baseline graph, who are more likely to

be externally observed and thus competing with sellers shown to consumers directly

by the platform owner.

Our analysis implies then that one solution to the platform owner's problem in-

duces a vector θ∗ that sellers observe completely at random, such that each consumer

segment observing each seller with the same probability and the expected number of

sellers observed overall is ϕ̂(θ∗). This is not a unique solution in all cases, as di�erent

sellers could be shown to each consumer segment with di�erent probabilities depend-

ing on n and m as long as each βj(θ
∗) = β overall. However, randomising across

sellers and consumer segments in this way is optimal for for all values of υ ∈ [0, 1),

m and n.

We can also characterise the e�ect of changing parameters in the model on the

optimal average number of sellers observed, ϕ̂(θ∗). To do so, we write ϕ̂(θ∗) =

ϕ̂∗(θ∗(c, γ)), and state the following result:

Proposition 6. Suppose c
′
> c and γ

′
> γ. Then ϕ̂∗(θ∗(c, γ)) ≥ ϕ̂∗(θ∗(c

′
, γ)) and

ϕ̂∗(θ∗(c, γ
′
)) ≥ ϕ̂∗(θ∗(c, γ)), with the inequalities strict if ϕ̂∗(θ∗(c, γ)) ∈ (1,m).

As substitutability increases, the platform has an incentive to reduce the average

number of sellers observed by each consumer segment, as this reduce the level of

expected competition in the network. As seller quality increases, so too does the

demand of every consumer for a given price vector, p, which increases the platform

owner's incentive to show consumers additional products, increasing competition, but

also expected sales.

7 Heterogeneous consumer segments and sellers

Thus far, we have considered the case in which both consumer segments and sellers

are homogeneous. We now consider the case where sellers di�er in terms of product

quality, and consumer segments di�er in terms of how substitutable they see each
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seller's product as being. In doing so, we highlight the �exibility of the network

approach to modelling buyer-seller interactions in this setting.

Vertical di�erentiation

In the previous section, we considered the case in which goods are horizontally dif-

ferentiated, but are of the same quality. We now consider the case where products

may di�er in quality, which in the model corresponds to the case where γj > γk for

at least one pair of sellers j and k. In this subsection, we assume that ci = c ∀i to

focus on the e�ect of vertical di�erentiation.

When one product is of higher quality than another, the platform owner has an

immediate incentive to always show buyers the highest quality sellers. However, the

analysis in Section 6 suggests that doing so imposes a cost on the platform owner,

as it means that the likelihood that high quality sellers will be in the relatively-

competition states (i.e. where ϕτi = dϕ̂(θ∗)e more often) will be larger and, when

υ > 0, it increases the expected level of competition lower quality sellers face, reducing

prices.

To understand the platform owner's trade-o� in more detail, let γ̂ := γh−γl, where

γh and γl represent the quality of the best and worst quality sellers respectively. The

following result holds:

Proposition 7. Suppose υ > 0 and γ̂ > 0. (i) If γj ≥ γk then βj ≥ βk and (ii)

∃δ ∈ R+ such that when γ̂ < δ, for any solution to the platform owner's maximisation

problem, θ∗b , there is at least one graph, Gτ , where θτ > 0 is a component of θ∗b and

Eij ∈ Gτ for all j.

The platform has an incentive to bias observations towards high quality products.

However, doing so increases the probability that low quality sellers compete in high

competition states, as it is more likely that they are active as a result of being in-

directly observed and thus compete with those sellers shown to the buyers directly.
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These sellers then set lower prices than they would if observation probabilities were

equal, which has a negative e�ect on the prices set by the high quality sellers.

If the di�erence between the highest and lowest qualities in not too high, then the

platform owner is willing to forgo some of the pro�t associated with only ensuring that

the highest quality products are observed in order to reduce the level of competition

in the network. To do so, they display sellers of lower quality to consumers with some

positive probability.

We show in the Appendix that Proposition 4 holds when products are vertically

di�erentiated. Proposition 7 then implies that for any optimal probability vector θ∗

each consumer segment is still optimally presented with either bϕ̂(θ∗)c or dϕ̂(θ∗)e

sellers, but is shown a mix of high quality and low quality sellers in expectation

when γ̂ < δ. If the platform were motivated to display fewer products as a result of,

for example, consumers facing choice overload or search costs, then it would always

display the highest quality products available, which di�ers from the outcome of

optimisation in our model. The selection of sellers presented to a given consumer

segment is more likely to contain the best quality seller than the worst quality seller,

but at least some consumers are directed to even the lowest quality sellers by the

platform with positive probability.

Increasing the probability that high quality products are observed increases the

level of e�ective competition in the network, which a�ects the optimal pattern of

observations. Suppose that each γ̃j ∼ Φ, where Φ is a symmetric and bounded

probability distribution, such that the realisation of γ̃j's value, γj > 0 and E[γ̃j] = γ̄

for all j. Suppose that the platform owner sets the vector θ after the realisation of

γ.

Let γ̃ denote the random quality vector associated with the case where each

γ̃j ∼ Φi. Suppose that if γ̃j ∼ Φ1 it is bounded such that γ̃j ∈ [γl, γh]. Now de�ne

Φ2 such that when γ̃j ∼ Φ2, γ̃j can be decomposed such that γ̃j = γ̃
′
j + εj, where

γ̃
′
j ∼ Φ1 and εj is distributed symmetrically with mean 0 and is bounded such that
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εj ∈ [εl, εh].

We examine the ex-ante (i.e prior to the realisation of γ̃) pro�ts and expected

number of sellers observed by each segment when qualities are have a distribution of

Φi in the following theorem:

Theorem 3. i) For any value of c and υ ∈ [0, 1), E[πP (θ∗)|γ̃ ∼ Φ2] ≥ E[πP (θ∗)|γ̃ ∼

Φ1] and ii) for any value of υ ∈ [0, 1), ∃cT ∈ R+ such that if c ≤ cT , E[ϕ̂(θ∗)|γ̃ ∼

Φ1] ≥ E[ϕ̂(θ∗)|γ̃ ∼ Φ2] and if c > cT , E[ϕ̂(θ∗)|γ̃ ∼ Φ2] > E[ϕ̂(θ∗)|γ̃ ∼ Φ1].

To illustrate the results in Theorem 3, we consider a more limited case where under

Φ1 each γ̃j = γ̄ with probability 1. Consider �rst the claim relating to pro�t. If c

is su�ciently small (e.g. equal to zero), then in expectation the optimal probability

vector for either distribution will be such that θ∗c = 1. In this case, expected pro�t is

the same under both distributions.

However, in the case where the platform owner restricts the number of sellers

consumers observe, they are able to bias consumer observation towards high-quality

products. In the case where Φ1 results in each seller having the same quality with

probability 1, this is clearly not possible, whereas the mean-preserving spread Φ2

generates some high-quality and low-quality players in expectation. Thus, when c

is su�ciently high, E[πP (θ∗)|γ̃ ∼ Φ2] > E[πP (θ∗)|γ̃ ∼ Φ1] due to consumers being

more likely to observe high-quality sellers.

Now consider the second result in Theorem 3. As c increases, the number of

sellers observed by consumers reduces for either distribution of qualities. However,

the expected loss of a segment observing fewer sellers to platform pro�t is increasing

more slowly in the case where is no vertical di�erentiation. The reason for this is

that as c becomes large, the expected quality of a seller that the platform owner is

marginally willing to exclude in the case where quality is dispersed becomes greater

than the mean quality level, γ̄.

The platform owner is less willing to exclude such high-quality sellers from being

observed. Hence, when c is su�ciently large, the optimal number of sellers a segment
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observes is, in expectation, greater for the vertically di�erentiated case compared to

the case where product quality is the same. This is shown in Figure 5.

Figure 5: Dark blue line denotes the case where γ̃ ∼ Φ2, light blue where γ̃ ∼ Φ1.

Heterogeneous consumers

Now we consider the case where each consumer segment's substitutability parameter,

ci, can di�er from one another, but assume products are not vertically di�erentiated.

A natural question in this setting is whether it would be more pro�table for the

platform to have some seller(s) serve consumer segments who see the products as

highly substitutable, while others are shown to those who see the products as being

less substitutable.

Our model suggests that, in fact, that the distribution of networks where each

consumer segment observes every seller with equal probability is still optimal in this

case, as Proposition 8 shows:

Proposition 8. Suppose ci > ck for at least one i, k consumer segment pair. Then,

for any optimal vector θ∗, ϕ̂i(θ
∗) ≤ ϕ̂k(θ

∗). Furthermore, there exists a solution to

the platform owner's maximisation problem, θ∗b , that induces a θ
∗ such that wij(θ

∗) =

wi ∀j.
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The �rst result in Proposition 8 re�ects the fact that when products are more substi-

tutable for i than k and i observes the same number of sellers as k, prices and pro�ts

from i will be lower than from k. The platform has an incentive to reduce the number

of products observed by i, and does so in equilibrium, assuming that it is not optimal

to always show both consumer segments every seller.

The second result indicates that, even in the case where consumers are heteroge-

neous with respect to how substitutable they see the goods as being, it is still optimal

to randomise across all sellers equally for each consumer segment. Competing for a

consumer segment composed of consumers who view products as highly substitutable

results in there being an incentive for sellers to reduce their prices. To increase prices,

then, the platform has an incentive to ensure that there is some probability that sellers

are observed by those consumer segments with lower levels of substitutability.

By ensuring that every seller is as central as every other seller for any optimal

probability vector θ∗, the platform maximises pro�ts; sellers set the same price and

are induced in doing by there being some probability of them being observed by

segments with high and low values of the substitutability parameter, ci.

One way to implement an outcome in which every seller is as central as another in

this case is by choosing a baseline probability vector that induces a θ∗ such that each

consumer segment observes every seller with equal probability. Of course, by the �rst

result in the theorem, that probability will di�er between consumer segments with

di�erent levels of ci, and if ci > ck, then it will be lower for i than k.

8 Conclusion

We analyse the case where consumers observe a subset of sellers on a platform, which

can be thought of as a bipartite observation network. The probability that an ob-

servation network is realised is determined either by nature or by the owner of the

platform. Prices are set prior to the realisation of the network, but the realisation

probabilities are common knowledge.

Using the characterisation of equilibrium, we observe how changes in network
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structure a�ect prices. By examining a case in which observation probabilities are

randomly determined, we show that prominent sellers impose a disproportionate cost

on the platform owner's pro�ts, due to the feedback e�ect inherent to equilibrium

price setting behaviour. Prominent sellers are more likely in the case where obser-

vation probabilities are more dispersed, and such sellers disproportionately increase

competition, decreasing prices.

Where there is no vertical di�erentiation, the optimal graph structure is one in

which the expected number of sellers observed by consumers is as close to the average

number of sellers observed across all possible networks. This minimises competition

for a given number of expected buyer-seller links, increasing pro�ts. When there is

even a small probability that consumers observe sellers not explicitly presented to

them by the platform, then it is always strictly better for the platform to randomise

such that buyers observe each seller with equal probability, rather than choose any

deterministic pattern of buyer-seller interaction.

When products are vertically di�erentiated, the platform owner has an incentive

to increase the probability that sellers of higher quality are observed. This increases

the e�ective competition faced by other sellers in the network, which reduces prices.

To reduce the signi�cance of this e�ect, the platform owner reduces the total number

of sellers observed by consumers and, if products are not too vertically di�erentiated

randomise so that each seller is deliberately presented to buyers some of the time.

As platforms have an incentive to reduce competition in order to increase prices,

our analysis suggests that competition authorities would be well-advised to take se-

riously attempts by platforms to control intra-platform competition. Regulation, in-

sofar as it has been directed at online platforms, has tended to focus on competition

between platforms. As particular online platforms become increasingly dominant, this

kind of competition becomes less relevant, and the incentives to increase prices by

tweaking search algorithms or the use of private information will become increasingly

important.
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More broadly, the framework here could be used to examine the e�ect of entry,

exit and mergers on networked markets. For example, it is possible to use our charac-

terisation of the price equilibrium to identify �rms who impose the most competitive

pressure on the network. Identifying such �rms has clear implications for merger

control and which �rms to support during economic crises.

Appendix

The demand function

We show that the linear demand curve for the game Γ(θ) is a form of the one generated

by the following demand system. Let yi denote i's demand for a numeraire good.

Suppose that i has the following quasi-linear, quadratic utility function:

ui(xi) =
m∑
j=1

γjxij −
m∑
j=1

κx2
ij −

m∑
j=1

xij(
m∑
k=1

ρxik) + yi

where κ, ρ ∈ R+. Suppose that each buyer has an income of $. Assuming $ is

su�ciently large and (A1) holds, the demand for each product is positive. De�ne the

m×m matrix with 1 on its diagonals and ρ on its o�-diagonals, κ. Then, as discussed

in Singh and Vives (1984) and Amir, Erikson and Jin (2015), the demand vector xi

can be written xi = κ−1(γ − p).

Hence, for any consumer segment i and any seller j, the intercept term of the

i's demand for j's product is some constant, a, multiplied by γ and their own price

sensitivity term is also equal to a.

Proof of Proposition 1

De�ne αj(θ) as follows:

αj(θ) :=

∑
i

∑
τ θτ [µ

τ
ij(aγj −

∑
i

∑
k ciµ

τ
ikγk)]

2aβj(θ)
.
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Note that assumption (A1) guarantees that: (a) αj(θ) > 0 ∀j where βj(θ) > 0 and

(b) [I − λRS(θ)] is positive de�nite for all θ. To see (a), as cγk > 0, then for a given

vector γ, and given values for the parameters c and a, αj(θ) is lowest when θ = θc,

where θc denotes the probability vector where θc = 1, where θc is the probability

that the complete bipartite graph Gc is realised. It is also clear that when θ = θc,

αl(θc) < αj(θ) ∀i 6= l. When (A1) holds, αl(θc) > 0, which implies αl(θ) > 0 for all

θ.

Now note that when (A1) holds, it must be the case that na > (m− 1)
∑

i ci, as∑
j 6=l γj

γl
≥ m−1. This immediately implies that the I−λRS(θc) is positive de�nite, as

it is strictly diagonally dominant. Let ςij(θ) denote the ijth component of I−λRS(θ).

The following trivially holds:

|
∑
j 6=i

ςij(θc)| ≥ |
∑
j 6=i

ςij(θ)| ∀i,θ 6= θc.

Hence, if the matrix I − λRS(θc) is diagonally dominant, then for any θ, the matrix

I − λRS(θ) is also diagonally dominant. The �rst result that αj(θ) > 0 ∀j for all

guarantees that there exists a price, p′l, such that for any vector of prices other than

l's, p−l, xil(pl',p−l) > 0. This holds for all i, and hence at any optimal solution it

must be the case that: (a) p∗j(θ) > 0 ∀j and (b) xil(p
∗) > 0.

De�ne: E[π̃j(p;θ)] = 1
2aβj(θ)

E[πj(p;θ)]. The maximisation problem maxpj E[π̃j(p;θ)]

has the same set of �rst-order conditions as the one that involves maximising j's orig-

inal pro�t function. It can be readily shown that the �rst-order condition (and there-

fore the resulting optimisation problem) for the payo� vector associated with the pay-

o� described in (1) is equivalent to the �rst-order condition of the payo� vector asso-

ciated with the original payo� function. The �rst-order condition of the payo� vector

with individual components described in (1) is as follows α = [I−λRS(θ)]p(θ),where

α is a m× 1 vector whose jth component is 1
2aβj(θ)

αj(θ)

As the matrix I−λRS(θ) is positive de�nite, it is non-singular and the above �rst-

order condition has a solution, which is denoted p∗(θ). Rearranging this �rst-order

condition leads to the expression: p∗(θ) = α[I − λRS(θ)]−1.
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The �rst-order condition above yields a unique, interior solution. As shown above,

(A1) guarantees that pj = 0 cannot be a solution for any seller j's maximisation

problem, as there exists a pj such that xij(p;θ) > 0. Hence, there exists a ε > 0 such

that pj = ε generates a strictly positive level of demand xij > 0, yielding a strictly

positive pro�t.

Noting that
∑
i

∑
τ θτ [µτij(aγj)]

2aβj(θ)
= 1

2
γj in this setting and de�ne γ as a m × 1 vec-

tor whose jth element is equal to γj. It follows that p∗(θ) = 1
2

∑∞
k=0 R

k
S(θ)γ −∑∞

k=1R
k
S(θ)γ, which directly implies the result.

Proof of Theorem 1

First, note that as centrality is independent of γ the expected price of each seller can

be written as E[p(θ,γ)] = γ − 1
2
E[C(θ)]γ. Recall that w̃

′
ij = w̃ij + εij, where εij is a

symmetric random variable and C(θ)1 =
∑∞

k=0R
k
S(θ)1.

This implies that E[Cj(θ)] = 1 +
∑∞

ξ=1 Pjξ(θ), where Pjξ(θ) is the expected

sum of the weighted paths of length ξ that begin at j given the vector θ. As

an example, a path of length 2 that goes from j to k and back to j is equal to

(
∑
i ci

2na

nwjwk
nwj

)(
∑
i ci

2na

nwjwk
nwk

) = (
∑
i ci

2na
)2wjwk in this setting. The weighted sum of all

paths of length 2 starting at j can hence be written (
∑
i ci

2na
)2
∑

k 6=j
∑

s 6=k wkws,and

(
∑
i ci

2na
)3
∑

k 6=j
∑

s6=k
∑

t6=swkwswt gives the same sum for paths of length 3, and so on.

Consider paths of length 1. Given that each E[εk] = 0, Pj1(θ̃1) = Pj1(θ̃2). Sim-

ilarly, as E[εjεk] = 0, it must be that Pj2(θ̃1) = Pj2(θ̃2). However, as E[εlk] > 0 for

all even values of l > 0 and all k, it must be that, E[(w̃
′

k)
2wj] = E[(w̃

′

k+εk)
2wj] >

E[(w̃k)
2wj] for all k 6= j. As E[(w̃

′

k)
2wj] for k 6= j is a component of Pj3(θ̃2),it follows

that Pj3(θ̃2) > Pj3(θ̃1). A similar argument holds for all Pjξ(θ) where ξ > 3: Pjξ(θ)

is a function of at least E[εξ−1
k ] and E[εξ−2

k ] for all k 6= j and, for any k, one of these

is by de�nition is greater than zero, and hence, Pjξ(θ̃2) > Pjξ(θ̃1) for ξ ≥ 3.

It follows from the above that E[Cj(θ̃2)] > E[Cj(θ̃1)] ∀j and thus E[pj(θ̃1)] >

E[pj(θ̃2)]. Now consider the ex-ante pro�t function of a seller j :
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E[πj(θ̃2)] = E[pj(θ̃2)αj]− bE[βjp2
j(θ̃2)] + E[

∑
j 6=k

ĉjkpj(θ̃2)pk(θ̃2)].

Just for the sake of argument, we �rst assume that the parameters αj, βj, and each

ĉjk are independent of the price vector p. As E[w̃
′
j] = E[w̃ij] and each element of set of

observation probabilities is independent of every other element of that set, it follows

that the expected pro�t generated by observation probabilities with distribution Λ2

would be lower than Λ1. The reason for this is that: (a) E[pj(θ̃2)] < E[pj(θ̃1)] and

(b) (A1) implies that pro�t is concave in pj. Hence, even if E[pj(θ̃2)] = E[pj(θ̃1)], the

following expression:

E[pj(θ̃2)]E[αj]− bE[βj]E[p2
j(θ̃2)] + E[C(θ̃2)]

is less than the equivalent expression for θ̃1, because var(εij) > 0.

However, the parameters αj, βj and each ĉjk are not independent of the realisation

of each random observation probability as they are a function of w̃ij. Expected

demand in this environment can be written:

E[x̃ij(p
∗)] = w̃j(aγ − apj + ci

∑
j 6=k

wk(pk − γ)).

Hence, it follows that cov(x̃ij(p
∗),p∗) < 0, which holds both because (A1) implies that

demand conditional on i observing j is falling in price and because cov(w̃
′′
j ,p

∗) < 0.

Furthermore, |cov(w̃
′′
j ,p

∗)| > |cov(w̃
′
j,p

∗)|. Hence, E[πj(θ̃2)] > E[πj(θ̃1)].

Proof of Proposition 2

Given that C(θ)1 =
∑∞

k=0 R
k
S(θ)1 and the expression for the equilibrium price vector,

it is clear that the complete network maximises the centrality of each node in G,

which then minimises the price vector p for a given m. At the same time, as (A1)

holds, an edge Eij between consumer segment i and seller j increases total demand,

holding prices constant. Hence, a complete network, which implies that, holding price
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constant, i's expected consumer surplus is maximised where θc = 1. It follows from

these two facts that consumer surplus is maximised when θ = θc.

Proof of Proposition 3

Consider the case where θc = 1 and let G denote a graph which is de�ned as Gc−Eij =

G for some buyer i and the seller for whom γj is the smallest component in the vector

γ. Let θ1 = θG − θc and p∗k(θc) = p∗k. By the envelope theorem (Milgrom and Segal,

2002):

∂πP
∂θ1

|θc=1 = −ap∗j(γ − p∗j + 2ci
∑
k 6=j

(p∗k − γ)) +
∑
l

∑
k 6=l

ĉklp
∗
l

∂p∗k
∂θ1

.

As (p∗k − γ) < 0, it follows that ∂2πP
∂θ1∂c
|θc=1 > 0. Hence, there exists a c̄ such that if

ci > c̄ for all i, then ∂πP
∂θ1
|θc=1 > 0 and thus θc is suboptimal.

Proof of Proposition 4

Let Cj(θ) be (jointly one of) the smallest component(s) of the vector C(θ)1m. We

�rst examine the e�ect of the change from θ to θ̂jk, which we de�ne as θ̂jk :=

(1 − ε)θ + εθjk, on the sum of the pro�ts of j and k, holding pi i 6= j, k �xed. Note

that in this case, the sum of these pro�ts can be written:

E[πj(θ) + πk(θ)] =
∑
j,k

[pi(θ)(αi − aβipi(θ) +
∑
l 6=i

ĉilpl(θ))].

As a result of the fact that pro�ts are increasing and concave in prices below the

monopoly price (which is implied by (A1)), it follows that the proposed switch will

result in an increase in the total pro�ts the platform receives from j and k. The same

logic applies for any seller Cl(θ) > Cj(θ) and if Cl(θ) = Cj(θ), then the proposed

reallocation has no direct e�ect on prices. It follows that:

pj(θ) + pk(θ) < pj(θ̂jk) + pk(θ̂jk).
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Hence:

ĉjkpk(θ)) + ĉkjpj(θ)) < ĉjkpk(θ̂jk)) + ĉkjpj(θ̂jk)).

Furthermore, given that pj(θ) < pk(θ), and that
∑

j,k pi(θ)(αi−aβipi(θ)) is increasing

and concave in pi ∈ [0, 1
2
γ], it follows that the e�ect of the change from θ to θ̂jk on

the sum of the pro�ts of j and k, holding pi i 6= j, k �xed is an increase in platform

pro�ts. This then implies that the direct e�ect of a change in probability vector from

change from θ to θ̂j (i.e. where the proposed set of neighbourhood switches takes

place between j and every other seller in the network).

We now turn to the second order e�ects of the proposed reallocation when m > 2.

By second-order e�ects, we refer to the e�ect of the proposed set of neighbourhood

switches between j and every k 6= i has on i's pro�ts. Formally, we compare
∑

i πi((1−

(m − 2)ε)θ +
∑

k 6=j εθjk − εθji) with the sum of pro�ts generated by θ,
∑

i πi(θ).

De�ne:

∆Ci := Ci((1 − (m− 2)ε)θ +
∑
k 6=j

εθjk − εθji)− Ci(θ)

As per Bonacich (1972), Cj(θ) = 1 +
∑

k 6=j ĉjkCk(θ), from which two observations

follow. First, as the direct e�ect of each neighbourhood switch between j and k

increases j's centrality less than it decreases k's, it follows that
∑

i ∆Ci(θ) > 0.

Furthermore, it must also be the case that if Ci(θ) ≥ Cl(θ) then |∆Ci(θ)| ≥ |∆Cl(θ)|,

i, l 6= j.

The two above facts imply that the sum of second-order prices changes is positive

and that the prices of more central sellers increase more than the prices of less central

players. Again, as πP (θ) is concave and increasing in pj ∈ [0, 1
2
γ] for all j, it follows

that the sum of the second-order e�ects of a switch from θ to θ̂j are pro�t increasing.

The above analysis then jointly implies that πP (θ̂j) > πP (θ). This implies the

result: for any vector in which there exists a pair of sellers j and k such that Cj(θ) >

Ck(θ), there is always a series of neighhbourhood switches that increases pro�ts.
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Hence, any solution to the platform owner's maximisation problem must be such that

Cj(θ) = Ck(θ) for all j, k pairs

Proof of Theorem 2

Noting that Cj(θ) = 1 +
∑

j 6=k ĉjkCk(θ), Theorem 2 implies that any solution, θ∗b ,

to the platform owner's maximisation problem, induces a θ∗ and GS(θ∗) such that∑
k 6=j ĉjk(θ) = ĉ(θ∗) ∈ R+. De�ne σ

τ
jy as the number of buyers for which seller j faces

competition from exactly y ∈ {0, 1...,m− 1} sellers in the graph Gτ , with y = 0 if Gτ

is such that Eij = 0 for all j. Then we can write
∑

k 6=j ĉjk(θ) as follows:

∑
k 6=j

ĉjk(θ) =
c
∑

y

∑
τ yθτσ

τ
jy

aβj(θ)
, (1)

which implies that a
c
ĉ(θ∗)+1 = ϕ̂∗i (θ

∗) = ϕ̂(θ∗) for all i when ci = c. For now, assume

υ = 0 and hence θ = θb. Consider a proposed pro�t-maximising vector θ in which

(a) Cj(θ) = Ck(θ) for all j, k pairs and (b) it is true for at least one segment i that

ϕτi ≤ bϕ̂∗c or ϕτi ≥ dϕ̂∗e, with at least one of the inequalities strict, in at least one

graph τ realised with probability θτ > 0. We rule out that ϕτi = 0 for any consumer

segment i in any graph τ realised with probability θτ > 0, as this clearly suboptimal.

As each consumer segment is identical in such a graph it is possible to construct

a probability vector, θ̄, which yields the same pro�ts as θ, but makes it easier to

compare pro�ts across graphs.

Take a graph τ generated with probability θτ > 0. As before, let τij denote the

graph generated by a neighbourhood switch between two consumer segments, i and

j being performed on the graph τ . Let X denote total number of possible switches

between i, k ∈ B.

Let θ̄ denote the following probability vector. Suppose θτ > 0. Then the proba-

bility that τ is realised in θ̄ is θτ
X+1

, which is also equal to the realisation probability

of each τij for i, j ∈ B where i 6= j. As Cj(θ) = Ck(θ) and consumers have identical

preferences, πP (θ̄) = πP (θ). The transformation makes it possible to show that θ is
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not a solution to the platform owner's pro�t maximisation problem.

We consider �rst the case where in θ, there exists a graph τ where ϕτi < bϕ̂(θ∗)c

and a graph τ
′
in which ϕτ

′

j > dϕ̂(θ∗)e, where i and j may not be the same segment,

and then consider afterwards the case where one of these inequalities is not strict.

Under this assumption, when the probability vector is θ̄, there is a strictly positive

probability that a graph τH will be realised, where ϕτHi > dϕ̂(θ∗)e and i observes a

set of sellers SH . There is also a strictly positive probability that a graph, τH,L, is

realised, where τH,L is �paired� with τH in the sense that i observes a set of sellers

SH,L ⊂ SH and ϕ
τH,L
i < bϕ̂(θ∗)c.

Suppose τ
′
H is a graph identical to τH except that i observes a set of sellers S

′
H ⊂

SH , such that ϕ
τ
′
H
i = dϕ̂(θ∗)e. This is ensured by deleting the edge between i and

j, Eij, for at least one seller j where Eij ∈ τH . Let τ
′′
H be a graph identical to τ

′
H

except that i observes a set of sellers S
′′
H ⊆ S

′
H ⊂ SH , such that ϕi(τ

′
H) = bϕ̂(θ∗)c,

by deleting at most one edge between i and k where Eik ∈ τ
′
H . Note that if ϕ̄ is an

integer, then τ
′
H and τ

′′
H are identical, otherwise S

′′
H ⊂ S

′
H ⊂ SH .

Similarly, de�ne τ
′
H,L as a graph identical to τH,L except that i observes the set of

sellers S
′
H , such that ϕi(τ

′
H,L) = dϕ̂(θ∗)e. This is ensured by adding an edge between i

and j, Eij, for at least one seller j where Eij /∈ τ . τ
′′
H,L is constructed in an analogous

way to τ
′′
H , and hence i observes a set of sellers S

′′
H ⊆ S

′
H ⊂ SH .

Let the constant η > 0 be such that it solves the expression ηdϕ̂(θ∗)e + (1 −

η)bϕ̂(θ∗)c = ϕ̂(θ∗). We de�ne the probability vector θ̄
′
in the following way. θ̄

′
τ = θ̄τ

for all graphs except the probability that τH and its pair τH,L, θ̄
′
H and θ̄

′
L, are realised

is zero. Instead, ηθ̄
′

τ
′
H

+ (1− η)θ̄
′

τ
′′
H

= θ̄τH and ηθ̄
′

τ
′
L

+ (1− η)θ̄
′

τ
′′
L

= θ̄τL .

Each segment observes, in expectation, the same number of sellers in both θ̄
′
and

θ̄. If there is a di�erence in pro�t between the two, it is driven by di�erences in

prices. Suppose that j ∈ S ′′H . If it is also the case that k ∈ S ′′H then ĉjk(θ̄
′
) = ĉjk(θ̄).

However, by construction, S
′′
H ⊆ S

′
H ⊂ SH and there exists a l ∈ SH but l /∈ S

′′
H .

It follows that
∑

l ĉjl(θ̄
′
) <

∑
l ĉjl(θ̄) for at least one j, l pair. It follows that the
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centrality of j and l are lower in θ̄
′
than in θ̄. This implies that prices are higher

across the network in θ̄
′
than in θ̄, which in turn implies that πP (θ̄

′
) > πP (θ̄), so θ

cannot be a solution to the platform owner's maximisation problem.

Now consider the case in which there is a positive probability that a graph τ
′

where ϕτ
′

i > dϕ̂(θ∗)e is realised when the probability vector is θ, but there is no

graph with positive realisation probability where ϕτi < bϕ̂(θ∗)c. Given that ϕ̂(θ∗) is

the number of sellers observed in expectation, it must be the case that ϕτi = bϕ̂(θ∗)c

for at least one i and τ pair. It follows that if the graph τ
′
is paired with a graph

in which i observes exactly bϕ̂(θ∗)c sellers in the way described above, the vector θ̄
′

will still be more pro�table for the platform owner than θ.

Suppose there exists a graph τ where ϕτi < bϕ̂(θ∗)c, but for no graph generated

with positive probability by the vector θ is it the case that ϕτ
′

j > dϕ̂(θ∗)e for any

j, τ
′
pair. For this to hold it must be the case that ϕ̂∗ is not an integer and that

ϕτ
′

j = dϕ̂(θ∗)e and θτ ′ > 0 for at least one j, τ
′
pair.

If ϕτHi = dϕ̂(θ∗)e and ϕτH,Li < bϕ̂(θ∗)c, then the preceding analysis implies that

S
′′
H ⊂ S

′
H ⊂ SH . Hence, by the same logic as the case where both original inequalities

were strict, it must be true that θ̄
′
will still be more pro�table for the platform owner

than θ,even in the case where no segment observes more than dϕ̂(θ∗)e sellers.

The same proof applies for υ > 0, where θb 6= θ. Suppose θb is such that at

least one segment i that ϕτi ≤ bϕ̂c or ϕτi ≥ dϕ̂e, with at least one of the inequalities

strict. De�ne θ̄
′

b and θ̄b in an analogous way to θ̄
′
and θ̄, and let θ

′
and θ be the

probability vectors induced by the baseline probability vectors θ̄
′

b and θ̄b respectively.

Noting that υ is common across all consumer segments and sellers, it must be that∑
l c̃jl(θ

′
) <

∑
l c̃jl(θ), and so πP (θ̄

′
) > πP (θ̄), which implies the result.

Proof of Proposition 5

Suppose that βs(θ
∗) > βt(θ

∗) for some s, t pair. By Theorem 2 it must be the case

that for any baseline graph Gr that is realised with positive probability when θ = θb,

ϕτi = bϕ̂(θ∗)c or ϕτi = dϕ̂(θ∗)e for all i.
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Recall from equation (1) above that
∑

k 6=j ĉjk(θ) =
c
∑
y

∑
τ yθτσ

τ
jy

2aβj(θ)
. As βs(θ

∗) >

βt(θ
∗), it more likely that if t is active then it is unintentionally observed they are

unintentionally observed than is the case with s, and hence it must be that
στsy
βs(θ)

<
στty
βt(θ)

for all y > dϕ̂(θ∗)e−1, and
στsy
βs(θ)

>
στty
βt(θ)

for y = dϕ̂(θ∗)e−1 and y = bϕ̂(θ∗)c−1.

Hence,
∑

k 6=s c̃sk(θ) <
∑

k 6=t c̃tk(θ) when βs(θ
∗) > βt(θ

∗). It follows that Cs(θ) <

Ct(θ), violating the condition for optimality in Proposition 4. Thus, βj(θ
∗) = β ∀j.

Proof of Proposition 6

Let Gτ denote a graph where θτ for the optimal vector θ∗b = θ∗b(c, γ) where ϕτi =

bϕ̂c ∈ (1,m) for all i and Eij /∈ Gτ for some buyer i and seller j. Now consider a

graph G
′
τ , de�ned as Gτ + Eij = G

′
τ , realised with probability θ

′
τ . Let θ

′′
= θ

′
τ − θτ

and p∗j(θ
∗) = p∗j :

∂πP (θ∗(c, γ))

∂θ′′
= −ap∗j(γ − p∗j + 2

∑
k 6=j

c(p∗k − γ)) +
∑
k

∑
s6=k

2aβk(θ
∗)ĉksp

∗
k

∂p∗s
∂θ′′

.

For an optimum probability vector, θ∗(c, γ), ∂πP (θ∗(c,γ))

∂θ′′
= 0. Note that (p∗k − γ) < 0

and | ∂p
∗
s

∂θ′′
| is increasing in c, it follows that ∂πP (θ)

∂θ′′
is falling in c for all ϕ̂ ∈ (1,m).

Hence ∂πP (θ∗(c
′
,γ))

∂θ′′
< 0 and thus ϕ̂∗(θ∗(c, γ)) > ϕ̂∗(θ∗(c

′
, γ)).

Noting that ∂πP (θ)

∂θ
′′ is increasing in γ by (A1), it follows that ∂πP (θ∗(c,γ

′
))

∂θ
′′ > 0 and

hence ϕ̂∗(θ∗(c, γ
′
)) > ϕ̂∗(θ∗(c, γ)). If ϕ̂ = 1,then we have a corner solution, and it is

possible that ϕ̂(θ∗(c, γ
′
)) = ϕ̂(θ∗(c, γ)) and ϕ̂(θ∗(c, γ)) = ϕ̂(θ∗(c

′
, γ)). Similarly, if

ϕ̂ = m, then it is also possible that those equalities hold. Hence, for ϕ̂(θ∗(c, γ)) ≥

ϕ̂(θ∗(c
′
, γ)) and ϕ̂(θ∗(c, γ

′
)) ≥ ϕ̂(θ∗(c, γ)).

Proof of Proposition 7

Suppose γk = γH and γj = γL. Suppose the converse of the statement in the Propo-

sition holds, so that there is no graph G realised with positive probability under a

baseline probability vector θb such that Eij ∈ G. If υ > 0 then βj(θ) > 0 even under

this assumption. Let θ be the probability vector induced by θb.
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First, note that the proof of Proposition 4 does not rely on the assumption that

γj = γk for all j, k pairs: it is still the case that any graph in which ϕτj < bϕ̂(θ∗)c or

ϕτj > dϕ̂(θ∗)e is suboptimal. By the proof of Proposition 5, it follows that Ck(θ) <

Cj(θ).

Consider the vector: θ̂
′

:= (1− ε)θ+ εθjk. The proof of Proposition 4 shows that

there is a priori incentive for the platform to switch from inducing the vector θ to θ̂
′

by performing a j, k neighbourhood switch on each Gτ whose component is θτ > 0 in

the vector θ.

However, in the case where γ̂ > 0, such a switch imposes a cost on the platform

as υ < 1 and thus βk(θ̂
′

) < βk(θ), βj(θ̂
′

) > βj(θ). Even if pj = pk (which does not

hold here), E[xij(p)|µij = 1] < E[xik(p)|µij = 1] for all i: each consumer segment's

innate demand is higher for k than j.

De�ne the function Djk(θ, γ̂) as follows:

Djk(θ, γ̂) =
∑
τ

θτ [π
τ
k(θ

′
)− πτj (θ)]

Where πτj (θ) is the pro�t j receives in Gτ when the probability vector is θ. We de�ne

Bjk(θ, γ̂) :

Bjk(θ, γ̂) =
∑
τ

θτ [π
τ
j (θ

′
)− πτk(θ)] +

∑
l 6=k,j

∆πl

where ∆πl = πl(θ
′
) − πl(θ). Clearly, Bjk(θ, γ̂) + Djk(θ, γ̂) =

∑
l ∆πl. Djk(θ, γ̂) is

continuous, decreasing in γ̂ and negative for γ̂ > 0, while Bjk(θ, γ̂) is continuous and

increasing in γ̂, which follows from the fact that it is a positive function of πτj (θ
′
) and

because πl(θ) is a function of µτijcγj and µ
τ
ikcγk.

When γ̂ = 0, Bjk(θ, γ̂) + Djk(θ, γ̂) > 0 by Proposition 4. Hence, ∃δ ∈ R+ such

that for all γ where γ̂ < δ such that Bjk(θ, γ̂) + Djk(θ, γ̂) > 0. As this holds for γj,

it also holds for any seller, s, with γs ≤ γk.

For (i), suppose the converse is true and that γk > γs, but βk < βs. Let γk−γs := γ
′

and θ̂
′′

:= (1 − ε)θ + εθks. As per the argument above, Ck(θ) > Cs(θ) and hence
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Bks(θ, γ
′
) > 0. Given that γ

′
> 0, it must also be the case that Dks(θ, γ

′
) > 0. It

immediately follows that πP (θ̂
′′

) > πP (θ).

Proof of Theorem 3

By the envelope theorem, ∂E[πP (θ)|Φ=Φi]
∂γj

is linear in γj. This follows from the fact that

the following result holds:

∂E[πP (θ)|Φ = Φi]

∂γj
= E[p∗j(

∂αj(θ)

∂γj
) +

∑
i

∑
k

2aβi(θ
∗)ĉikp

∗
i

∂p∗k
∂γj
|Φ = Φi].

The expression
∂αj(θ)

∂γj
is linear and increasing in γj.

∂p∗k(θ)

∂γj
= −1

2
{RS}j,k for all k 6= j

and
∂p∗j (θ)

∂γj
= 1 − 1

2
{RS}jj, where {RS}ij denotes the ijth component of the matrix

RS. By (A1), the sum which constitutes the second term in the right hand side of

the above expression is positive and linear in γj. For small changes in γj, then, pro�t

is approximately increasing linearly in γj. If E[πP (θ)] were increasing and linear in

γj, the following statement holds:∑
i

E[βiγ̃i|Φ = Φj] ≥
∑
i

E[βiγ̃i|Φ = Φk]↔ E[πP (θ)|Φ = Φj] ≥ E[πP (θ)|Φ = Φk].

Proposition 7 indicates that βi = βi(γ̃i) where β
′
i(.) ≥ 0. The following result holds:

∑
i

E[βi(γ̃i)γ̃i|Φ = Φ2] =
∑
i

(E[βi(γ̃i)γ̃i|Φ = Φ1] + E[βi(γ̃i)εi].

It is clear that E[βi(γ̃i)εi] ≥ 0 as cov(βi(γ̃i), εi) ≥ 0 and E[εi] = 0. Hence:

∑
i

E[βi(γ̃i)γ̃i|Φ = Φ2] ≥
∑
i

E[βi(γ̃i)γ̃i|Φ = Φ1].

Of course, for large changes in γj, E[πP (θ)], is not linear in γj. This is because j's

price is linearly increasing in γj, and hence j's pro�t is a function of γ2
j . Given that

(A1) holds, ∂
2E[πP (θ)]
∂2γj

> 0 for all j, which in turn implies that if βi(γ̃i) = βj that pro�t

under Φ2 would be larger than Φ1. This implies that:
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∑
i

E[βiγ̃i|Φ = Φ2] ≥
∑
i

E[βiγ̃i|Φ = Φ1]→ E[πP (θ)|Φ = Φj] > E[πP (θ)|Φ = Φk],

which is the result in (i).

With regards to (ii), we consider the case where c increases from 0. When c = 0,

θc = 1 for either distribution, as per Proposition 3. Let θG denote the realisation

probability of a graph, G, in which each segment observes every seller except that i

does not observe a seller k and thus observes m− 1 sellers. De�ne θτ := θc − θG. We

consider the ex post expression ∂πP (θ∗;γ)

∂θ′τ
= πθτ .

When c is su�ciently small, πθτ ≥ 0 when θ = θc, in which case the optimal

solution is θ∗ = θc. It is clear that:
∂πθτ
∂c

< 0,
∂πθτ
∂γk

< 0 and
∂|πθτ c|
∂γj

> 0 for some j 6=

k. Furthermore,
∂|πθτ c|
∂γj

is independent of γk, as p
∗ = γ−1

2
C(θ)γ. Abusing notation

slightly, we can then write πθτ as a function of γk and γ_k, the (m− 1)× 1 vector of

quality parameters not including k, πθτ (γk,γ_k).

For any (γl,γh) = (γk,γ_k), there exists a threshold level of c, c
′
(γl,γh) such

that if c ≥ c
′
(γl,γh) then πθτ (γl,γh) ≤ 0, but if c < c

′
(γl,γh) then πθτ (γk,γ_k) > 0.

Note that, when c = c
′
(γl,γh), πθτ (γk,γ_k) > 0 if γk > γl and γ_k ≤ γh or γk < γh

and γk ≥ γl. Let γ̂H = γh + εH and γ̂L = γl + εL, the lowest and highest possible

values the quality of a seller can take when γ̃i ∼ Φ2. As Φ2 is symmetric, it must be

the case that:

Pr(γ̃j = γ̂H |Φ = Φ2) = Pr(γ̃k = γ̂L|Φ = Φ2) > Pr(γ̃j = γ̂H |Φ = Φ1) = 0.

Let γ̂H denote an (m − 1) × 1 vector with components all equal to γ̂H . When

c = c
′
(γ̂L, γ̂H), Pr(πθτ < 0|Φ = Φ2) > Pr(πθτ < 0|Φ = Φ1) = 0. It follows that:

E[ϕ̂(θ∗)|c = c
′
(γ̂L, γ̂H),Φ = Φ2] < m = E[ϕ̂(θ∗)|c = c

′
(γ̂L, γ̂H),Φ = Φ1].

Suppose the largest component of γ is γh. Let Gj denote the graph in which seller h
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and only h is observed by every consumer segment. Let θH denote the probability

vector in which θh = 1.

Let γs be the largest component of the vector γ_
k
. De�ne Gs as a graph which is

identical to Gj but where i observes h and seller s, and let θs denote the probability

that this graph is realised. Let θd = θs − θh. For a given quality vector γ, when c is

su�ciently large, πθd < 0 when θ = θH and in this case θ = θH is an optimal solution

to the platform owner's problem. As before, it is clear that:
∂πθd
∂c

< 0,
∂πθd
∂γs

> 0 and
∂|ππθdc|
∂γk

> 0.

For a given γh, the incentive to increase θd is greatest when γs = γh. Consider the

marginal e�ect of increasing θd from 0 when θ = θH , using the envelope theorem:

∂E[πP (θ)]

∂θd
= ap∗s(γs − p∗s) + 2aβs(θ

∗)ĉshp
∗
s

∂p∗h
∂θd
− cγh + 2aβh(θ

∗)ĉhsp
∗
h

∂p∗s
∂θd
− cγs.

While
∂p∗h(θ)

∂θd
= −{RS}hsγh and ∂p∗s(θ)

∂θd
= −{RS}shγh, by (A1) the above expression is

increasing in γh.

We can see that
∂πθd
∂c

< 0 and we also know there exists a values of c such that

θ = θc and that θ = θH are solutions to the platform owner's problem. For a

given γh, and assuming γs = γh, then there exists a c
′′
(γh) such that if γs = γh and

c ≤ c
′′
(γh),then πθd ≥ 0 and c > c

′′
(γh) then πθd < 0. The analysis above relating to

∂E[πP (θ)]
∂θd

directly implies that c
′′
(γh) is increasing in γh.

Suppose c = c
′′
(γ̂H). It follows that:

Pr(γ̃s = γ̂H |Φ = Φ2) > Pr(γ̃s = γ̂H |Φ = Φ1) = 0.

Hence Pr(πθd < 0|Φ = Φ2) > Pr(πθd < 0|Φ = Φ1) = 0, and thus:

E[ϕ̂(θ∗)|c = c
′′
(γ̂H),Φ = Φ2] > 1 = E[ϕ̂(θ∗)|c = c

′′
(γ̂H),Φ = Φ1].

Now consider the function ϕ̂
′
(c) = E[ϕ̂(θ∗)|c,Φ = Φ2] − E[ϕ̂(θ∗)|c,Φ = Φ1]. The
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above analysis shows that there exists a c
′
where ϕ̂

′
(c
′
) < 0 and a c

′′
where ϕ̂

′
(c
′′
) > 0.

Furthermore, E[ϕ̂(θ∗)|c,Φ = Φi] is a continuous function, and hence ϕ̂
′
(c) is as well.

Hence, by the intermediate value theorem, there exists a cT ∈ R such that ϕ̂
′
(cT ) = 0.

It follows that if c ≤ cT , ϕ̂
′
(c) ≤ 0 and if c > cT , ϕ̂

′
(c) > 0.

Proof of Proposition 8

For the second claim in the Proposition, note that the proof of Proposition 4 does

not rely on the assumption that ci = c for all i. In which case, for any optimal

probability vector, it must be that Cj(θ
∗) = Ck(θ

∗) for all j, k pairs. Consider a

probability vector θ in which this condition holds and wij(θ) 6= wik(θ) for some

consumer segment i and seller pair j, k,and consider the following transformation:

Take a graph τ generated with probability θτ > 0 under θ. As before, let τjk

denote the graph generated by a neighbourhood switch between two sellers, j and k

being performed on the graph τ . Let Y denote the total number of possible switches

between any pair of sellers j, k ∈ S.

Let θ̃ denote the following probability vector. Suppose θτ > 0. Then the proba-

bility that τ is realised in θ̃ is θτ
Y+1

, which is also equal to the realisation probability

of each τij for i, j ∈ B where i 6= j. As Cj(θ) = Ck(θ) and sellers are identical,

πP (θ̃) = πP (θ). Furthermore, wij(θ̃) = wik(θ̃) for all j, k, and hence if θ was an

optimal probability vector, so too will be θ̃.

For the �rst claim, we can show that for all optimal baseline distribution of net-

works, θ∗b , ϕ
τ
i = bϕic or ϕτi = dϕie for some ϕi ∈ [1,m] for all i. To see this, we

note that the proof of Theorem 2 can be applied to each buyer node individually by

noticing that θ̃ is analogous to θ̄. Applying the same proof method to θ̃ then yields

the same conclusion as that Theorem.

Suppose contrary to the �rst statement in the proposition that ϕ̂i(θ
∗) = ϕ̂k(θ

∗) ∈

(1,m) for some optimal θ∗. Let ϕτi = bϕ̂i(θ∗)c where Eij /∈ Gτ for i and seller j.

Now consider a graph G
′
τ , de�ned as Gτ + Eij = G

′
τ , realised with probability θ

′
τ .
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De�ne θ
′

φ in the same way for consumer segment k. Let θ
′′
τ = θ

′
τ − θτ , θ

′′

φ = θ
′

φ − θφ
and p∗j(θ

∗) = p∗j . By the envelope theorem and the fact that ϕτi = bϕic or ϕτi = dϕie

for all i:

∂πP (p;θ∗b , υ)

∂θ′′τ
= −ap∗j(γ − p∗j + 2

∑
k 6=j

ci(p
∗
k − γ)) +

∑
k

∑
s6=k

2aβk(θ
∗)ĉksp

∗
k

∂p∗s
∂θ′′τ

= 0,

with the analogous result for θφ. Recall that (p∗k − γ) < 0 and by the result in

Proposition 1, it must be that | ∂p
∗
s

∂θ′′τ
| > | ∂p

∗
s

∂θ
′′
φ

| for all s, with ∂p∗s
∂θ′′τ

, ∂p
∗
s

∂θ
′′
φ

< 0. Hence, if

the above statement holds for
∂πP (p;θ∗b ,υ)

∂θ′′τ
, it cannot hold for

∂πP (p;θ∗b ,υ)

∂θ
′′
φ

when ϕ̂i(θ
∗) =

ϕ̂k(θ
∗), yielding a contradiction. It follows that all optimal baseline distribution of

networks, θ∗b , E[ϕi] < E[ϕk], and hence θ∗b induces a θ∗such that ϕ̂i(θ
∗) < ϕ̂k(θ

∗).

If bϕ̂i(θ∗)c = m, then bϕ̂k(θ∗)c = 1 and in which case ϕ̂i(θ
∗) = ϕ̂k(θ

∗). Similarly,

if dϕ̂k(θ∗)e = 1 then dϕ̂i(θ∗)e = 1. It follows that ϕ̂i(θ
∗) ≤ ϕ̂k(θ

∗) for any optimal

probability vector θ∗.
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